The hydrodynamics of eel swimming II. Effect of swimming speed.
نویسنده
چکیده
Simultaneous swimming kinematics and hydrodynamics are presented for American eels, Anguilla rostrata, swimming at speeds from 0.5 to 2 L s(-1). Body outlines and particle image velocimetry (PIV) data were collected using two synchronized high-speed cameras, and an empirical relationship between swimming motions and fluid flow is described. Lateral impulse in the wake is estimated assuming that the flow field represents a slice through small core vortex rings and is shown to be significantly larger than forces estimated from the kinematics via elongated body theory (EBT) and via quasi-steady resistive drag forces. These simple kinematic models predict only 50% of the measured wake impulse, indicating that unsteady effects are important in undulatory force production. EBT does, however, correctly predict both the magnitude and time course of the power shed into the wake. Other wake flow structures are also examined relative to the swimming motions. At all speeds, the wake contains almost entirely lateral jets of fluid, separated by an unstable shear layer that rapidly breaks down into two vortices. The jet's mean velocity grows with swimming speed, but jet diameter varies only weakly with swimming speed. Instead, it follows the body wavelength, which changes more among individuals than at different speeds. Circulation of the stop-start vortex, shed each time the tail changes direction, can also be predicted at low speeds by the integral of squared tail velocity over half of a tail beat. At high speeds, these kinematics predict more circulation than is actually present in the stop-start vortex. Finally, the cost of producing the wake, one component of the total cost of transport, increases with swimming speed to the 1.48 power, lower than would be expected if the power coefficient remained constant over the speed range examined.
منابع مشابه
The dynamical impact of mesoscale eddies on migration of Japanese eel larvae
In this study, we explore the dynamical role of mesoscale eddies on fish larvae migration using the example of Subtropical Counter Current eddies and the migration of Japanese eel larvae in the western North Pacific Ocean. An idealized experiment is conducted to isolate the effects of eddies, and use a three-dimensional particle-tracking method to simulate virtual eel larvae (v-larvae) migratio...
متن کاملSimulation and optimization of live fish locomotion in a biomimetic robot fish
This paper presents simplified hydrodynamics model for a biomimetic robot fish based on quantitative morphological and kinematic parameters of crangiform fish. The motion of four Pangasius sanitwongsei with different length and swimming speed were recorded by the digital particle image velocimetry (DPIV) and image processing methods and optimal coefficients of the motion equations and appropria...
متن کاملPop Up Satellite Tags Impair Swimming Performance and Energetics of the European Eel (Anguilla anguilla)
Pop-up satellite archival tags (PSATs) have recently been applied in attempts to follow the oceanic spawning migration of the European eel. PSATs are quite large, and in all likelihood their hydraulic drag constitutes an additional cost during swimming, which remains to be quantified, as does the potential implication for successful migration. Silver eels (L(T) = 598.6±29 mm SD, N = 9) were sub...
متن کاملComparison of swimming capacity and energetics of migratory European eel (Anguilla anguilla) and New Zealand short-finned eel (A. australis)
The spawning migration of the European eel (Anguilla anguilla) can cover more than 6000 km, while that of the New Zealand short-finned eel (A. australis) is assumed to be approximately 3000 km. Since these species are expected to show adaptive traits to such an important lifetime event, we hypothesized differences in swimming capacity and energetics as a response to this adaptation. In an exper...
متن کاملA kinematic comparison of forward and backward swimming in the eel anguilla anguilla
In addition to forward undulatory swimming, eels (and some other elongated swimmers) can swim backwards in a similar way. We compared the kinematics (wave speed, cycle frequency, amplitude, local bending and estimated muscle strain) of forward and backward swimming in the European eel Anguilla anguilla. Both swimming modes are characterised by a wave of undulation that travels over the body in ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of experimental biology
دوره 207 Pt 19 شماره
صفحات -
تاریخ انتشار 2004